

CFD

Use and benefits

What is CFD?

"Computational Fluid Dynamics"

- An Engineering Tool
 - Design
 - Troubleshooting
 - "Virtual laboratory"
- A Numerical Method
 - Solves equations of motion for fluid
 - Steps:
 - set up problem
 - solve
 - view results

CFD: Numerical method

- CFD solves the Navier-Stokes equations, i.e. Conservation Principles of
 - mass,
 - momentum,
 - energy, chemical species, turbulence...

$$\frac{\partial \varrho}{\partial t} + \frac{\partial}{\partial x_i}(\varrho u_i) = 0$$

$$\frac{\partial}{\partial t}(\varrho u_i) + \frac{\partial}{\partial x_j}(\varrho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + \varrho g_i + F_i$$

Getting at the solution

- Problem set up, or "pre-processing"
 - integration with design group / CAD
 - graphical interface
 - parametric studies
- Solver computes the flow field
 - speed, accuracy, reliability
 - features "models"
- Viewing results, "post-processing"
 - numbers, graphs, figures, animations

The CFD process

- Create or import your geometry using CADstyle tools
- Discretize the geometry: mesh generation, fluid and solid domains
- Define flow conditions, fluid properties, physics
- Submit the calculation (solve the conservation equations for mass, momentum, energy)
- Review results (graphs, data)

What can be modeled?

- Compressors
- Expansion Turbines
- Heat Exchangers
- Valves
- Separators
- Filters
 - Ducting
 - Dryers

Results

- Performance
- Visualization
- Erosion
- Fouling/plugging
- Pressure losses
- Heat transfer
- Cavitation
- Noise

Setting expectations

To expect

- Values for
 - Performance
 - Forces
 - Pressures
 - Erosion
- Parametric studies
- Visualization
- Qualitative behaviour
- Investment that pays off

NOT to expect

- Replacement for good engineering judgement
- Complete replacement for testing
- Immediate and effortless results
 - Accurate results require
 - Detailed models
 - Knowledge of your problem
 - Knowledge of limitations

Benefits of CFD

Reduce design time

Understand problems and physics involved

Improve performance

Enhance product quality

Control check valve

Control check valve

Velocity vectors

Pressure acting on disc: calculate forces & spring

Grid size: 400 000 cells

Highlight design failures:

The combined action of the **wall** (too close to the cage) and the **eddy** gets the flow out of the hole, making it ineffective.

Control valve

Highlight design failures:

Backflow regions in some holes

- Complements physical modelling.
- Provides comprehensive data not easily obtainable from experimental tests.
- Is more cost-effective than physical modelling.
- Reduces the product-tomarket time scale.
- Answers the "what if...?" question.
- Highlights the cause, not just the effect.